RSS

Комментарии

Сколько времени потребуется, чтобы увидеть результаты внедрения ИИ в моем бизнесе?
Стоимость внедрения ИИ зависит от таких факторов, как сложность решения, размер вашего бизнеса и то, решите ли вы разрабатывать ИИ собственными силами или использовать сторонние сервисы. Однако многие инструменты и платформы ИИ становятся все более доступными и недорогими для предприятий всех размеров.
Можно узнать, как дорого ли внедрять ИИ в моем бизнесе?
В погоне за эффективностью бизнес часто упускает из виду фундаментальный парадокс ИИ — чем сложнее система, тем труднее предсказать ее поведение в edge-кейсах. Яркий пример — системы скоринга в кредитовании, где за математической точностью алгоритмов могут скрываться дискриминационные паттерны, унаследованные из тренировочных данных. Это не техническая погрешность, а системная проблема, требующая создания новых методологий аудита алгоритмических решений.

Особую остроту приобретает вопрос ответственности за решения, принятые ИИ. Когда чат-бот медицинского сервиса дает рекомендации или нейросеть отбирает кандидатов на вакансию, последствия ошибки выходят далеко за рамки технического сбоя. Именно поэтому передовые компании создают специальные этические комитеты по ИИ, где технологические решения проверяются не только на эффективность, но и на соответствие гуманитарным ценностям бизнеса.

Парадоксально, но именно осознание ограничений ИИ открывает путь к его наиболее эффективному использованию. Когда технология перестает восприниматься как «черный ящик», а становится понятным инструментом с определенной областью применения, бизнес начинает извлекать из нее максимальную пользу без риска стратегических просчетов.
Главное заблуждение при внедрении ИИ — воспринимать его как универсальный инструмент для точечных задач. Настоящая ценность искусственного интеллекта раскрывается, когда он становится частью ДНК компании, переосмысливающей свои процессы через призму data-driven подходов. Ключевая трансформация происходит не на уровне автоматизации рутинных операций, а в способности алгоритмов выявлять скрытые взаимосвязи между, казалось бы, разрозненными аспектами бизнеса — от логистики до клиентского опыта.

Особенно показателен пример ритейла, где нейросетевые модели анализа поведения покупателей позволяют не просто оптимизировать ассортимент, а проектировать принципиально новые форматы взаимодействия с клиентом. Когда система на основе миллионов транзакций начинает предсказывать спрос на уровне отдельных SKU с точностью до 97%, это меняет саму философию управления запасами. Но такой результат возможен только при условии, что ИИ интегрирован в стратегическое планирование, а не используется как точечное решение для отчетности.
Kubernetes и Serverless отличаются по уровню контроля над инфраструктурой следующим образом:

Kubernetes предоставляет более высокий уровень контроля и гибкости. Он позволяет управлять всей инфраструктурой, включая серверы, хранилище данных, сеть и т. д. Это даёт разработчикам возможность более детально настраивать и управлять приложениями.

Serverless предоставляет только среду выполнения для кода и не даёт доступа к инфраструктуре. Облачный провайдер берёт на себя управление серверами и другими ресурсами, что упрощает процесс разработки и развёртывания приложений.
Чем отличается Serverless от Kubernetes по уровню контроля над инфраструктурой?
Хорошая статья, спасибо автору, сейчас подумываем масштабировать свой старенький Интернет-магазин сменив его и сделав новый маркетплейс, тем более в нашей нише вообще еще никого нет.
Лично я бы посоветовал обязательно прочитать 3 книги и несколько ресурсов, включая книги, статьи, онлайн-курсы и руководства, доступны для изучения темных данных. Крайне важно экспериментировать со многими ресурсами, чтобы увидеть, какой из них лучше всего подходит вашему стилю обучения и навыкам.

Кроме того, полезно быть в курсе последних достижений и тенденций в отрасли, следя за соответствующими блогами, форумами и экспертами отрасли.

1. Темные данные: почему то, чего вы не знаете, имеет значение

Эта книга представляет собой практическое руководство по глубокому пониманию принципов темных данных. Она включает в себя несколько реальных примеров и тематических исследований, чтобы помочь читателям понять тему.

Автор приводит различные примеры из других компаний, чтобы продемонстрировать темы, представленные в книге. Эти примеры помогают читателям из всех слоев общества лучше понять и понять книгу.

2. Dark Data: Control, Alt, Delete

Эта книга представляет собой увлекательное и поучительное руководство, в котором дается подробный обзор проблем и возможностей, которые представляют собой темные данные в современном цифровом мире.

Автор представил пошаговый подход к выявлению, сбору и анализу темных данных и их использованию для достижения конкурентного преимущества в бизнесе.

3. Темные данные и темные социальные сети

Эту книгу необходимо прочитать всем, кто хочет оставаться на шаг впереди в эпоху данных.

Кроме того, автор осветил различные вопросы, такие как управление данными, конфиденциальность и безопасность, что делает книгу бесценным источником информации для всех, кто занимается наукой о данных или управлением бизнесом.
Спасибо за ответ, а есть полезные ресурсы для изучения темных данных?
Источники тёмных данных многообразны и пронизывают всю ИТ-инфраструктуру предприятия. В 2025 году, когда интернет вещей, мобильные технологии и цифровое взаимодействие станут ещё более распространенными, объём теневой информации вырастет экспоненциально.

Основные категории источников Dark Data:

— Цифровые взаимодействия: логи веб-серверов, записи API-вызовов, данные о просмотрах страниц, прерванные транзакции, поисковые запросы на сайте
— Коммуникации: электронная почта, чаты поддержки, телефонные разговоры, сообщения в корпоративных мессенджерах
— Операционные системы: журналы событий, данные мониторинга, отчеты об ошибках
— Пользовательский опыт: записи перемещения мыши (heatmaps), сессии использования приложений, отказы от заполнения форм
— IoT и датчики: телеметрия оборудования, сенсорные данные, геопространственная информация
Особенно интересны с точки зрения бизнес-ценности такие источники тёмных данных как:

— Прерванные транзакции и брошенные корзины — содержат ценные инсайты о препятствиях к конверсии
— Данные о взаимодействии с интерфейсами — выявляют точки фрикции и возможности для улучшения пользовательского опыта
— Метаданные документов — могут указывать на неэффективные рабочие процессы или информационные утечки
— Временные данные системы — помогают выявить периоды пиковой нагрузки и оптимизировать ресурсы
Объясните мне простым языком, как выглядят темных данные, где я мог бы я мог их найти и увидеть источники и типы Dark Data в корпоративных системах?
Одним из примеров темных данных являются журналы сервера, которые регистрируют активность веб-сайта. Эти журналы часто содержат ценную информацию о поведении пользователя, например, какие страницы пользователи посещали, как долго они оставались и на что нажимали. Но без надлежащего анализа эти данные часто остаются неиспользованными.

Полезны ли темные данные?

Да — при анализе темные данные могут выявлять скрытые закономерности, повышать операционную эффективность и поддерживать стратегические решения. Их потенциал зависит от инструментов и фреймворков, используемых для анализа.
Объясните что является примером темных данных? А также полезны ли они?
Насколько я понимаю, использование темных данных сопряжено с различными затратами и рисками например:

Тратить место для хранения впустую

Даже неиспользуемые данные требуют физической или цифровой инфраструктуры хранения, такой как серверы, центры обработки данных, облачные решения и системы резервного копирования. По мере накопления темных данных они часто потребляют ценные ресурсы хранения, которые могли бы быть лучше использованы активными данными. Чтобы не отставать, организациям приходится инвестировать в большее пространство, что приводит к увеличению эксплуатационных расходов.

Юридическая ответственность

На протяжении многих лет правительства по всему миру внедряли строгие законы о конфиденциальности, которые распространяются на все данные, включая неиспользуемую информацию, хранящуюся в аналитических репозиториях. Даже если данные не используются или о них забыли, они все равно должны соответствовать этим правилам, что создает серьезные юридические (и потенциально финансовые) риски.

Операционная неэффективность

Необходимость просеивать огромные объемы нерелевантной информации затрудняет процесс поиска и анализа данных, заставляя сотрудников тратить чрезмерное количество времени на поиск релевантных данных. Эта неэффективность снижает производительность и увеличивает затраты на рабочую силу.

Риски безопасности

Наличие темных данных делает организации более уязвимыми к утечкам данных, потере данных и другим рискам кибербезопасности. Без надлежащего надзора конфиденциальная информация, скрытая в темных данных, может быть непреднамеренно раскрыта или неправильно использована, что может привести к финансовым штрафам и репутационному ущербу.

Альтернативные издержки

Компании часто упускают ценные возможности, пренебрегая неиспользуемыми данными. Хотя устранение этих данных может снизить риски и затраты, предварительный анализ имеющихся данных имеет важное значение для выявления потенциальной ценности.
Изначально мы были довольно скептично настроены по отношению к готовым решениям, полагая, что только индивидуальный подход может обеспечить все необходимые нам функции. Однако после детального изучения возможностей платформы DST наши сомнения развеялись. Особенно впечатляет гибкость системы – мы смогли настроить практически все ключевые процессы под специфику нашего бизнеса.

Техническая поддержка работает на высшем уровне: специалисты не просто решают возникающие вопросы, но и дают ценные рекомендации по оптимизации работы площадки. За три месяца работы на платформе мы увеличили количество продавцов в три раза и значительно повысили конверсию. DST Marketplace действительно оправдывает все вложенные в него средства.
В нашем случае выбор DST Marketplace стал поворотным моментом в развитии компании. Мы долго искали оптимальное решение для запуска маркетплейса и перепробовали несколько альтернативных платформ, но только DST полностью удовлетворил наши требования. Особенно хочу отметить качество технической реализации – система работает стабильно, без сбоев, даже при пиковых нагрузках во время распродаж. Интеграция с платежными системами прошла гладко, а модуль аналитики предоставляет все необходимые данные для принятия управленческих решений. Наша команда довольна простотой управления платформой, а продавцы отмечают удобство работы с личным кабинетом. За полгода работы на платформе мы вышли на запланированные показатели и продолжаем активно развиваться. DST Marketplace – это именно то решение, которое позволяет сосредоточиться на развитии бизнеса, а не на технических проблемах.
В нашем случае выбор DST Marketplace стал поворотным моментом в развитии компании. Мы долго искали оптимальное решение для запуска маркетплейса и перепробовали несколько альтернативных платформ, но только DST полностью удовлетворил наши требования. Особенно хочу отметить качество технической реализации – система работает стабильно, без сбоев, даже при пиковых нагрузках во время распродаж. Интеграция с платежными системами прошла гладко, а модуль аналитики предоставляет все необходимые данные для принятия управленческих решений. Наша команда довольна простотой управления платформой, а продавцы отмечают удобство работы с личным кабинетом. За полгода работы на платформе мы вышли на запланированные показатели и продолжаем активно развиваться. DST Marketplace – это именно то решение, которое позволяет сосредоточиться на развитии бизнеса, а не на технических проблемах.
В нашем случае выбор DST Marketplace стал поворотным моментом в развитии компании. Мы долго искали оптимальное решение для запуска маркетплейса и перепробовали несколько альтернативных платформ, но только DST полностью удовлетворил наши требования. Особенно хочу отметить качество технической реализации – система работает стабильно, без сбоев, даже при пиковых нагрузках во время распродаж. Интеграция с платежными системами прошла гладко, а модуль аналитики предоставляет все необходимые данные для принятия управленческих решений. Наша команда довольна простотой управления платформой, а продавцы отмечают удобство работы с личным кабинетом. За полгода работы на платформе мы вышли на запланированные показатели и продолжаем активно развиваться. DST Marketplace – это именно то решение, которое позволяет сосредоточиться на развитии бизнеса, а не на технических проблемах.
Решили масштабировать наш онлайн-магазин «Мир Мебели» до полноценного маркетплейса и столкнулись с необходимостью выбора технологической платформы. После долгих поисков и анализа различных решений остановили свой выбор на DST Marketplace. Первое, что поразило – это широчайшие возможности кастомизации под конкретные бизнес-задачи.

Команда разработчиков помогла нам адаптировать платформу под уникальные требования нашего проекта, включая интеграцию с существующими системами учета и CRM. Отдельно хочу отметить высокую производительность системы – даже при значительных нагрузках платформа работает стабильно и без сбоев.

За время работы с DST мы значительно увеличили объемы продаж и расширили базу продавцов. Это действительно профессиональное решение для тех, кто хочет быстро и эффективно запустить свой маркетплейс.

Заявка на услуги DST

Наш специалист свяжется с вами, обсудит оптимальную стратегию сотрудничества,
поможет сформировать бизнес требования и рассчитает стоимость услуг.

Адрес

Ижевск, ул. Воткинское шоссе 170 Е.
Региональный оператор Сколково. Технопарк Нобель

8 495 1985800
Заказать звонок

Режим работы: Пн-Пт 10:00-19:00

info@dstglobal.ru

Задать вопрос по почте

Укажите ваше имя
Укажите ваше email
Укажите ваше телефон