Эволюция архитектур баз данных: управление большими данными, облаком и интеграцией ИИ

В статье специалистами компании DST Global обсуждается, как развивались архитектуры баз данных для обработки больших данных, облака и искусственного интеллекта, включая СУБД, NoSQL и облачные решения.

В постоянно расширяющемся цифровом мире, где данные генерируются с беспрецедентной скоростью, архитектура баз данных выступает основой эффективного управления данными. С появлением технологий больших данных и облачных технологий, а также с интеграцией искусственного интеллекта (ИИ) сфера архитектур баз данных претерпела глубокую трансформацию.

Эта статья погружается в сложный мир архитектур баз данных, изучает их адаптацию к средам больших данных и облачным средам, а также анализирует развивающееся влияние ИИ на их структуру и функциональность. Поскольку организации сталкиваются с проблемами обработки огромных объемов данных в режиме реального времени, важность надежной архитектуры баз данных становится все более очевидной. От традиционных основ систем управления реляционными базами данных ( СУБД ) до гибких решений, предлагаемых базами данных NoSQL, и масштабируемости облачных архитектур — эволюция продолжает отвечать требованиям современной среды, управляемой данными.

Кроме того, конвергенция технологий искусственного интеллекта открывает новые аспекты управления базами данных, обеспечивая интеллектуальную оптимизацию запросов, профилактическое обслуживание и появление автономных баз данных. Понимание этой динамики имеет решающее значение для преодоления сложностей современных экосистем данных и использования всего потенциала аналитических данных, основанных на данных.

Традиционный фундамент: системы управления реляционными базами данных (СУБД)

Традиционно системы управления реляционными базами данных (СУБД) были стойкими приверженцами управления данными. RDBMS, характеризующаяся структурированными данными, организованными в таблицы с предопределенными схемами, обеспечивает целостность данных и надежность транзакций посредством свойств ACID (атомарность, согласованность, изоляция, долговечность). Примеры СУБД включают MySQL, Oracle и PostgreSQL.

Осознание сложности больших данных: базы данных NoSQL

Появление больших данных потребовало перехода от жестких структур РСУБД к более гибким решениям, способным обрабатывать огромные объемы неструктурированных или полуструктурированных данных. Введите базы данных NoSQL — семейство систем баз данных, предназначенных для удовлетворения скорости, объема и разнообразия больших данных (Каушик Кумар Патель (2024)). Базы данных NoSQL существуют в различных формах, в том числе ориентированных на документы, хранилищах ключей-значений, хранилищах семейств столбцов и графовых баз данных, каждая из которых оптимизирована для конкретных моделей данных и вариантов использования. Примеры включают MongoDB, Cassandra и Apache HBase.

Использование возможностей облака: облачные архитектуры баз данных

Облачные архитектуры баз данных используют масштабируемость, гибкость и экономичность облачной инфраструктуры для обеспечения доступа по требованию к ресурсам хранения и обработки данных. С помощью таких моделей, как «Инфраструктура как услуга» (IaaS), «Платформа как услуга» (PaaS) и «База данных как услуга» (DBaaS), организации могут выбирать уровень абстракции и управления, соответствующий их потребностям. Мультиоблачные и гибридные облачные архитектуры еще больше повышают гибкость, обеспечивая распределение рабочей нагрузки между несколькими облачными провайдерами или интеграцию с локальной инфраструктурой (Хишем Мулахум, Фаезе Горбанизамани (2024)). Яркие примеры включают Amazon Aurora, Google Cloud Spanner и Microsoft Azure Cosmos DB.

Поток и хранение данных: локальные и облачные базы данных

Понимание потока и хранения данных имеет решающее значение для эффективного управления как локальными, так и облачными базами данных. Вот разбивка диаграммы архитектора базы данных (DBA) для каждого сценария:

Локальная база данных

Объяснение

- Сервер приложений: взаимодействует с базой данных, инициируя создание, извлечение и обновление данных.

- Извлечение данных: этот процесс, часто использующий методологии «Извлечение, преобразование, загрузка» (ETL) или «Извлечение, загрузка, преобразование» (ELT), извлекает данные из различных источников, преобразует их в формат, совместимый с базой данных, и загружает их.

- База данных: это основное хранилище, позволяющее управлять и организовывать данные с использованием определенных структур, таких как реляционные таблицы или хранилища документов NoSQL.

- Хранилище: это физические устройства хранения, такие как жесткие диски (HDD) или твердотельные накопители (SSD), на которых хранятся файлы базы данных.

- Система резервного копирования. Регулярное резервное копирование имеет решающее значение для аварийного восстановления и обеспечения доступности данных.

Поток данных

- Приложения взаимодействуют с сервером базы данных, отправляя запросы на создание, извлечение и обновление данных.

- Процесс ETL/ELT извлекает данные из различных источников, преобразует их и загружает в базу данных.

- Данные сохраняются внутри ядра базы данных, организованные по определенной структуре.

- Устройства хранения физически содержат файлы базы данных.

- Резервные копии периодически создаются и хранятся отдельно для целей восстановления данных.

Облачная база данных

Объяснение

- Сервер приложений: как и в локальном сценарии, он взаимодействует с базой данных, но через шлюз API или SDK, предоставляемый поставщиком облачных услуг.

- API Gateway/SDK: этот уровень действует как абстракция, скрывая базовую сложность инфраструктуры и предоставляя приложениям стандартизированный способ взаимодействия с облачной базой данных.

- Облачная база данных: это управляемая услуга, предлагаемая облачными провайдерами, которая автоматически обеспечивает создание, обслуживание и масштабирование базы данных.

- Облачное хранилище: представляет собой инфраструктуру хранения облачного провайдера, в которой хранятся файлы базы данных и резервные копии.

Поток данных

- Приложения взаимодействуют с облачной базой данных через шлюз API или SDK, отправляя запросы данных.

- Шлюз API/SDK преобразует запросы и взаимодействует со службой облачной базы данных.

- Служба облачной базы данных управляет сохранением, организацией и извлечением данных.

- Данные хранятся в инфраструктуре хранения облачного провайдера.

Ключевые различия

- Управление. Локальные базы данных требуют наличия собственных специалистов для установки, настройки, обслуживания и резервного копирования. Облачные базы данных представляют собой управляемые услуги, и поставщик занимается этими аспектами, высвобождая ИТ-ресурсы.

- Масштабируемость. Локальные базы данных требуют ручного масштабирования аппаратных ресурсов, тогда как облачные базы данных предлагают эластичное масштабирование, автоматически адаптируясь к меняющимся потребностям.

- Безопасность: оба варианта требуют мер безопасности, таких как контроль доступа и шифрование. Однако поставщики облачных услуг часто имеют надежную инфраструктуру безопасности и сертификаты соответствия.

Конвергенция архитектур искусственного интеллекта и баз данных

Интеграция искусственного интеллекта (ИИ) в архитектуры баз данных знаменует новую эру интеллектуальных решений по управлению данными.

Технологии искусственного интеллекта, такие как машинное обучение и обработка естественного языка, расширяют функциональность базы данных, обеспечивая автоматизированный анализ данных, прогнозирование и принятие решений. Эти достижения не только оптимизируют операции, но и открывают новые возможности для оптимизации производительности и надежности баз данных.

Интеллектуальная оптимизация запросов

В области интеллектуальной оптимизации запросов методы на основе искусственного интеллекта революционизируют то, как базы данных обрабатывают сложные запросы. Анализируя шаблоны рабочей нагрузки и системные ресурсы в режиме реального времени, алгоритмы ИИ динамически корректируют планы выполнения запросов, чтобы повысить эффективность и минимизировать задержки. Такой упреждающий подход обеспечивает оптимальную производительность даже в условиях меняющихся рабочих нагрузок и меняющихся структур данных.

Прогнозируемое обслуживание

Прогнозируемое обслуживание, поддерживаемое искусственным интеллектом, меняет подходы организаций к управлению работоспособностью и стабильностью баз данных. Используя исторические данные и прогнозную аналитику, алгоритмы ИИ прогнозируют потенциальные сбои системы или узкие места в производительности до того, как они произойдут. Такая предусмотрительность позволяет использовать стратегии упреждающего обслуживания, такие как распределение ресурсов и обновление системы, сокращение времени простоя и оптимизация надежности базы данных.

Автономные базы данных

Автономные базы данных представляют собой вершину инноваций в архитектуре баз данных, основанных на искусственном интеллекте. Эти системы используют алгоритмы искусственного интеллекта для автоматизации рутинных задач, включая настройку производительности, управление безопасностью и резервное копирование данных. Автономно оптимизируя конфигурации баз данных и устраняя уязвимости безопасности в режиме реального времени, автономные базы данных минимизируют операционные издержки и повышают надежность системы. Эта вновь обретенная автономия позволяет организациям сосредоточиться на стратегических инициативах, а не на рутинных задачах обслуживания, стимулируя инновации и эффективность всего предприятия.

Взгляд в будущее: тенденции и вызовы

По мере развития архитектуры баз данных наше внимание привлекает целый ряд тенденций и проблем:

Периферийные вычисления

Распространение устройств Интернета вещей (IoT) и развитие архитектур периферийных вычислений предвещают переход к децентрализованной обработке данных. Это требует разработки решений для распределенных баз данных, способных эффективно управлять и анализировать данные на границе сети, оптимизировать задержку и использование полосы пропускания, обеспечивая при этом понимание и оперативность реагирования в режиме реального времени.

Конфиденциальность и безопасность данных

В эпоху растущих объемов данных сохранение конфиденциальности и безопасности данных приобретает первостепенное значение (Джонни Бэрстоу, (2024)). По мере ужесточения нормативной базы и роста киберугроз организациям приходится ориентироваться в сложной среде управления данными, чтобы обеспечить соблюдение строгих правил и усилить защиту от развивающихся уязвимостей безопасности, защищая конфиденциальную информацию от нарушений и несанкционированного доступа.

Объединенное управление данными

Распространение разрозненных источников данных в различных системах и платформах подчеркивает необходимость в интегрированных решениях для управления данными. Архитектуры федеративных баз данных предлагают целостную структуру для плавной интеграции и доступа к распределенным источникам данных, облегчая взаимодействие и позволяя организациям использовать весь спектр своих активов данных для принятия обоснованных решений и получения практической информации.

Квантовые базы данных

По мнению специалистов компании DST Global появление квантовых вычислений знаменует смену парадигмы в архитектуре баз данных, обещая экспоненциальный скачок в вычислительной мощности и эффективности алгоритмов. Квантовые базы данных, использующие принципы квантовой механики, обладают потенциалом совершить революцию в обработке данных, обеспечивая более быстрые вычисления и более сложную аналитику для сложных наборов данных. По мере развития квантовых вычислений организации должны подготовиться к использованию этих преобразующих возможностей, используя квантовые базы данных, чтобы открыть новые горизонты в области инноваций и открытий, основанных на данных.

Заключение

Эволюция архитектур баз данных отражает неустанный ход технологического прогресса. От жесткой структуры традиционных СУБД до гибкости баз данных NoSQL и масштабируемости облачных решений — базы данных адаптировались для удовлетворения растущих потребностей приложений с интенсивным использованием данных. Более того, интеграция ИИ расширяет функциональность базы данных, открывая путь к более интеллектуальным и автоматизированным решениям для управления данными. По мере того, как мы ориентируемся в будущее, решение возникающих проблем и внедрение инновационных технологий будут иметь важное значение для формирования следующего поколения архитектур баз данных.

Эволюция архитектур баз данных: управление большими данными, облаком и интеграцией ИИ
Получить консультацию у специалистов DST
Напишите нам прямо сейчас, наши специалисты расскажут об услугах и ответят на все ваши вопросы.
Комментарии и отзывы экспертов
RSS
19:51
+4
Эволюция архитектур баз данных — прямое следствие неумолимого технологического прогресса. Движение от жестких структур традиционных РСУБД к гибким решениям NoSQL БД и масштабируемым облачным решениям обусловлено потребностями в более интенсивном и эффективном использовании данных. Более того, интеграция ИИ в разы расширяет функциональность БД, давая тем самым «зеленый свет» более интеллектуальным и автоматизированным решениям по управлению данными. В будущем внедрение инновационных технологий будет играть важнейшую роль в формировании следующего поколения архитектур баз данных.
19:52
+3
Искусственный интеллект — это не только чатботы, отвечающие на любые вопросы, но и инструменты, которые трансформируют все уровни стека программного обеспечения, в том числе СУБД. Как именно меняются базы данных благодаря ИИ?

Данные, на которых обучаются модели ИИ, после извлечения из базы приходится преобразовывать в специальный формат — векторы. Это возможно для данных любого типа, но наиболее широко применяются методы векторного представления (или «вложения», embedding) слов: различным словам и фразам сопоставляются векторы из некоторого набора, кодирующие не только само слово, но и его значение: векторы, «близкие» друг к другу по направлению в пространстве, соответствуют схожим по значению словам. При этом векторов в наборе гораздо меньше, чем количество слов, которые они кодируют. Для формирования такого набора используют разные подходы, в том числе обработку с помощью нейронных сетей.

Поддержка работы с векторами появилась в PostgreSQL и других традиционных СУБД, но существуют и специализированные базы данных, хранящие их в форме векторов, например, Pinecone, Vespa, Milvus и др. Механизмы обработки запросов в таких СУБД способны выдавать не только точные соответствия, но и близкие или наиболее подходящие, словно «угадывая» намерение пользователя. Если раньше для реализации подобных возможностей применялись самостоятельные приложения, то теперь соответствующие алгоритмы встраиваются непосредственно в СУБД. В частности, Oracle предлагает такие решения, адаптированные для различных отраслей, например, для интернет-магазинов.

В традиционных СУБД формируются индексы, ускоряющие поиск информации по конкретным столбцам. Векторные же позволяют создавать индексы, охватывающие весь объем данных и позволяющие легко находить «близкие» друг к другу векторы. К тому же запросы к таким базам можно делать на естественном языке, а не на SQL.

Средства ИИ также применяются для автоматической классификации неструктурированных данных и размещения их в таблицах СУБД. Алгоритмы могут упорядочивать информацию, фильтровать «шум», классифицировать текст по эмоциональной окраске или фотопортреты по выражению лица. Сервисы классификации данных и автоматического размещения в базах предлагает, например, компания Amazon Web Services.

Оптимизация производительности традиционных СУБД — сложная задача, связанная с настройкой многочисленных параметров и схем. Обычно этим занимается администратор базы данных, но теперь оптимизацию могут выполнять алгоритмы машинного обучения, учитывающие закономерности запросов и структур данных. Они могут следить за трафиком на сервере, адаптировать настройки в зависимости от нагрузки в режиме реального времени и прогнозировать потребности пользователей. В Oracle стали позиционировать свои СУБД в качестве автономных и не требующих администратора, так как они с помощью алгоритмов ИИ сами регулируют свою производительность «на лету».

ИИ может помогать в очистке данных: алгоритмы способны обнаруживать аномалии и предлагать корректировки. Автоматизированная система, к примеру, может найти неверно записанную фамилию клиента и исправить на правильный вариант с учетом остальных вхождений. Microsoft для своей СУБД SQL Server предлагает решение Data Quality Services, которое автоматически устраняет проблемы наподобие незаполненных полей, дублирующихся вхождений и др.

Алгоритмы ИИ, регистрирующие аномалии в данных, позволяют превратить СУБД в систему обнаружения мошенничества. Например, если кто-то впервые для себя воспользовался банкоматом поздно ночью или кредиткой в чужой стране, это может быть сигналом, на который среагирует подобная система. Возможности интеграции механизмов обнаружения мошенничества в стек ПО для работы с данными предлагает, например, облако Google.

Похожие алгоритмы применяются в организациях для нужд безопасности: ИИ способен обнаруживать отклонения от стандартных закономерностей работы с СУБД, могущие указывать на попытку взлома. Например, если пользователь удаленно запрашивает полные копии каких-либо таблиц, это повод забить тревогу. Пример инструмента, интегрируемого с уровнями хранения данных для управления доступом и регистрации аномалий, — IBM Guardian Security.

Итак, ИИ обучается на данных, хранимых непосредственно в СУБД, и позволяет делать к ним запросы на естественном языке. Чатботы вроде ChatGPT, Bard и Bing Chat сегодня претендуют на роль альтернативы традиционным системам веб-поиска, а возможна ли замена СУБД на подобный сервис? ИИ нередко «галлюцинирует», выдавая «выдуманные» ответы, или меняет формат выдачи по своей «прихоти». Но если предметная область достаточно узкая, а обучающая выборка по ней была исчерпывающей и свободной от ошибок, то для каких-то из задач ИИ вполне мог бы с успехом заменить и СУБД.
20:06
+2
Развития архитектуры баз данных сулит обширный спектр тенденций и возможных проблем:

Пограничные вычисления

Распространение устройств Интернета вещей (IoT) и появление архитектур пограничных вычислений предвещают переход к децентрализованной обработке данных, что требует разработки решений для распределенных баз данных, способных эффективно управлять и анализировать данные.Предполагается, что эти решения оптимизируют задержки, обеспечивая при этом оперативное управление в режиме реального времени.

Конфиденциальность и безопасность данных

В эпоху растущих объемов данных сохранение конфиденциальности и безопасности данных приобретает первостепенное значение (Jonny Bairstow, (2024)). По мере ужесточения нормативной базы и роста киберугроз приходится учиться хорошо ориентироваться в сложном ландшафте управления данными для того, чтобы обеспечить соответствие строгим нормам и усилить систему безопасности, защищая тем самым конфиденциальную информацию от возможных утечек и несанкционированного доступа и использования.

Федеративная модель управления данными

Распространение разрозненных источников данных в различных системах и платформах данных обуславливает необходимость использования федеративных решений для управления данными. Архитектуры федеративных баз данных предлагают целостную структуру для беспрепятственной интеграции и доступа к распределенным источникам данных, облегчая тем самым взаимодействие и позволяя организациям использовать весь спектр своих информационных активов для принятия обоснованных решений и получения желаемых результатов.

Квантовые базы данных

Появление квантовых вычислений предвещает смену парадигмы в архитектуре баз данных, обещая экспоненциальный скачок в вычислительной мощности и эффективности алгоритмов. Квантовые базы данных, использующие принципы квантовой механики, способны осуществить революцию в области обработки данных, обеспечив более быстрые вычисления и более сложную аналитику для сложных массивов данных. По мере развития квантовых вычислений организации должны готовиться к использованию квантовых баз данных для внедрения инноваций и передовых технологий, основанных на данных.
20:07
+1
Все верно. Эволюция архитектур баз данных — прямое следствие неумолимого технологического прогресса. Движение от жестких структур традиционных РСУБД к гибким решениям NoSQL БД и масштабируемым облачным решениям обусловлено потребностями в более интенсивном и эффективном использовании данных. Более того, интеграция ИИ в разы расширяет функциональность БД, давая тем самым «зеленый свет» более интеллектуальным и автоматизированным решениям по управлению данными. В будущем внедрение инновационных технологий будет играть важнейшую роль в формировании следующего поколения архитектур баз данных.
Ранее я описывал подходы масштабирования фронтэнда и масштабирования бэкенда и теперь настал черед немного поговорить о наиболее важной части — масштабировании базы данных.

Масштабирование базы данных

Прежде всего нужно понять, какие данные требуют масштабирования базы данных, почему они требуют. Единого решения и ответа здесь нет, а все зависит от конкретного проекта. Все зависит от множества нюансов, например, от того, как и где храняться данные. А ведь хранить разные данные можно по разному.

Давайте кратко вспомним какие основные модели хранения данных обычно используют.

— Реляционные базы данных — все данные хранятся в виде набора отношений, связанных между собой данных.
— Иерархические базы данных — данные хранятся в объектах в виде отношений между этими объектами.
— Сетевые базы данных — данные хранятся в структуре в виде графа.
— Объектно-ориентированные базы данных — данные храняться в виде моделей объектов.

Выбор и использование модели базы данных зависит от самих данных и все вопросы, которые касаются работы с данными, должны решаться на стадии выбора способа хранения данных.

С ростом количества пользователей, растет и количество данных, а соответственно и количество запросов и действий для работы с этими данными.

При масштабировании базы данных следует учитывать особенности сервера базы данных, какие настройки это сервера используются, правильно ли сервер вообще настроен. Нужно анализировать, какие запросы в приложении используются и какие затрудняют работу с данными, улучшить такие запросы, проверить структура базы в целом: таблицы, индексы полей этих таблиц.

Шардинг базы данных

И конечно же, здесь применимо масштабирование в горизонтальном направлении, разделение данных на несколько баз данных на разных серверах. Но при масштабировании базы данных это не просто горизонтальное масштабирование, а шардинг. Шардинг — это когда вы разделяете данные по базам данных на отдельных серверах, при этом разбиение данных должно производиться с учетом их максимальной связности в одном шарде и минимальной связанности в остальных шардах.

Репликация

Любой сервер, на котором расположена база данных, может выйти из строя и перестать работать. Чтобы не потерять данные используется репликация.

Репликация — это осуществление связи между серверами баз данных, перенос данных между этими серверами в тот момент, когда данные добавляются. При выходе из строя одного сервера базы данных, к работе подключается другой сервер, с точно такими же данными и все продолжает работать. Когда нерабочий сервер восстанавливается в работе, он вновь подключается для репликации и на него копируются данные добавленные в момент выхода из строя.Более подробней о репликации можно почитать в моем посте о репликации данных в MongoDB.

Партиционирование

Еще один метод масштабирования базы данных — партиционирование. Партиционирование — это функциональное разделение базы данных на некие отдельные места хранения: в разных таблицах, в разных типах баз данных (одни данные в MySQL, другие в MongoDB), в разных моделях хранения данных.

Денормализация

В некоторых случаях, разработчики прибегают к использованию денормализации для обеспечения быстрого доступа к данным. Денормализация — это когда данных дублируются при сохранении. Например, при создании поста для сайта, производится добавление тегов к этому посту. Вместо того, чтобы сохранять теги в отдельную таблицу, проверяя каждый раз тег на существование, чтобы не плодить дубли текста, а связь с постами и тегами во вторую таблицу, при денормализации все добавляет в одну таблицу, дублируя каждый раз текст. В некоторых случаях, денормализация данных приемлема, в остальных от нее лучше отказаться.
Вам может быть интересно
В этой статье разработчики компании DST Global обсудят ускорение и масштаб в СУБД, две фундаментальные концепции из параллельной обработки для баз данных, которые используются для настройки баз дан...
Тестирование — это сквозная проблема; Как и базы данныхОчень важно последо...
Двоичное квантование в векторных базах данных повы...
В этой статье вы узнаете от разработчиков компании...
Узнайте о преимуществах от разработчиков компании ...
Oracle — самая популярная база данных в мире...
В этом комплексном сравнении от разработчиков комп...
: создание эффективных практик разработки и обслуж...
В этой статье рассматривается, что такое потоковая...
В обычных базах данные хранятся в структурированно...

Новые комментарии

Поскольку организации продолжают полагаться на гибридные и общедоступные облачны...
Облачные вычисления уже более десяти лет является краеугольным камнем цифровой т...
Цифры, приведенные в исследовании, впечатляют, но и заставляют задуматься. 70% в...

Заявка на услуги DST

Наш специалист свяжется с вами, обсудит оптимальную стратегию сотрудничества,
поможет сформировать бизнес требования и рассчитает стоимость услуг.

Адрес

Ижевск, ул. Воткинское шоссе, д. 170 Е, Технопарк Нобель, офис 1117

8 495 1985800
Заказать звонок

Режим работы: Пн-Пт 10:00-19:00

info@dstglobal.ru

Задать вопрос по почте

Укажите ваше имя
Укажите ваше email
Укажите ваше телефон